extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C22.D4) = (C2×C42)⋊C4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 4 | C2^2.1(C2^2.D4) | 128,559 |
C22.2(C22.D4) = C24.C23 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 8+ | C2^2.2(C2^2.D4) | 128,560 |
C22.3(C22.D4) = M4(2).41D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 4 | C2^2.3(C2^2.D4) | 128,593 |
C22.4(C22.D4) = M4(2).42D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 32 | | C2^2.4(C2^2.D4) | 128,598 |
C22.5(C22.D4) = M4(2).46D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 32 | 8- | C2^2.5(C2^2.D4) | 128,634 |
C22.6(C22.D4) = M4(2).47D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 8+ | C2^2.6(C2^2.D4) | 128,635 |
C22.7(C22.D4) = M4(2).48D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 32 | | C2^2.7(C2^2.D4) | 128,639 |
C22.8(C22.D4) = M4(2).49D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.8(C2^2.D4) | 128,640 |
C22.9(C22.D4) = C42⋊D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 8+ | C2^2.9(C2^2.D4) | 128,643 |
C22.10(C22.D4) = C42.7D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 32 | 8- | C2^2.10(C2^2.D4) | 128,644 |
C22.11(C22.D4) = C24.28D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 8+ | C2^2.11(C2^2.D4) | 128,645 |
C22.12(C22.D4) = C42.131D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 4 | C2^2.12(C2^2.D4) | 128,782 |
C22.13(C22.D4) = M4(2).10D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 32 | | C2^2.13(C2^2.D4) | 128,783 |
C22.14(C22.D4) = M4(2).11D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.14(C2^2.D4) | 128,784 |
C22.15(C22.D4) = C24.563C23 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.15(C2^2.D4) | 128,1151 |
C22.16(C22.D4) = C23.398C24 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.16(C2^2.D4) | 128,1230 |
C22.17(C22.D4) = C24.115D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 32 | | C2^2.17(C2^2.D4) | 128,1823 |
C22.18(C22.D4) = (C2×D4).301D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 32 | | C2^2.18(C2^2.D4) | 128,1828 |
C22.19(C22.D4) = (C2×D4).302D4 | φ: C22.D4/C22⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.19(C2^2.D4) | 128,1829 |
C22.20(C22.D4) = M4(2).43D4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C22 | 32 | | C2^2.20(C2^2.D4) | 128,608 |
C22.21(C22.D4) = M4(2).44D4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C22 | 32 | 4 | C2^2.21(C2^2.D4) | 128,613 |
C22.22(C22.D4) = C23.344C24 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.22(C2^2.D4) | 128,1176 |
C22.23(C22.D4) = (C2×D4).303D4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.23(C2^2.D4) | 128,1830 |
C22.24(C22.D4) = (C2×D4).304D4 | φ: C22.D4/C4⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.24(C2^2.D4) | 128,1831 |
C22.25(C22.D4) = (C2×C4)≀C2 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 16 | | C2^2.25(C2^2.D4) | 128,628 |
C22.26(C22.D4) = C42⋊7D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 32 | | C2^2.26(C2^2.D4) | 128,629 |
C22.27(C22.D4) = C24.78D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 16 | | C2^2.27(C2^2.D4) | 128,630 |
C22.28(C22.D4) = C24.174C23 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 32 | | C2^2.28(C2^2.D4) | 128,631 |
C22.29(C22.D4) = C42.427D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 16 | 4 | C2^2.29(C2^2.D4) | 128,664 |
C22.30(C22.D4) = C42.428D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 32 | | C2^2.30(C2^2.D4) | 128,669 |
C22.31(C22.D4) = C42.107D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 32 | | C2^2.31(C2^2.D4) | 128,670 |
C22.32(C22.D4) = M4(2)⋊6D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 32 | | C2^2.32(C2^2.D4) | 128,769 |
C22.33(C22.D4) = M4(2).7D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 32 | | C2^2.33(C2^2.D4) | 128,770 |
C22.34(C22.D4) = C24.33D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 32 | | C2^2.34(C2^2.D4) | 128,776 |
C22.35(C22.D4) = C42.9D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 32 | 4 | C2^2.35(C2^2.D4) | 128,812 |
C22.36(C22.D4) = C42.10D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 32 | 4 | C2^2.36(C2^2.D4) | 128,830 |
C22.37(C22.D4) = C24.97D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 32 | | C2^2.37(C2^2.D4) | 128,1354 |
C22.38(C22.D4) = C24.589C23 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 64 | | C2^2.38(C2^2.D4) | 128,1355 |
C22.39(C22.D4) = C23.753C24 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 64 | | C2^2.39(C2^2.D4) | 128,1585 |
C22.40(C22.D4) = C24.183D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 32 | | C2^2.40(C2^2.D4) | 128,1824 |
C22.41(C22.D4) = C24.116D4 | φ: C22.D4/C22×C4 → C2 ⊆ Aut C22 | 32 | | C2^2.41(C2^2.D4) | 128,1825 |
C22.42(C22.D4) = C24.68D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 16 | | C2^2.42(C2^2.D4) | 128,551 |
C22.43(C22.D4) = C24.169C23 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.43(C2^2.D4) | 128,552 |
C22.44(C22.D4) = C24.70D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.44(C2^2.D4) | 128,558 |
C22.45(C22.D4) = C24.21D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.45(C2^2.D4) | 128,588 |
C22.46(C22.D4) = C4.10D4⋊2C4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.46(C2^2.D4) | 128,589 |
C22.47(C22.D4) = C24.22D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.47(C2^2.D4) | 128,599 |
C22.48(C22.D4) = C24.23D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.48(C2^2.D4) | 128,617 |
C22.49(C22.D4) = C4⋊Q8⋊15C4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.49(C2^2.D4) | 128,618 |
C22.50(C22.D4) = C24.24D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 16 | | C2^2.50(C2^2.D4) | 128,619 |
C22.51(C22.D4) = C4.4D4⋊13C4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.51(C2^2.D4) | 128,620 |
C22.52(C22.D4) = C25.C22 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 16 | | C2^2.52(C2^2.D4) | 128,621 |
C22.53(C22.D4) = C24.26D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.53(C2^2.D4) | 128,622 |
C22.54(C22.D4) = C4⋊C4.96D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.54(C2^2.D4) | 128,777 |
C22.55(C22.D4) = C4⋊C4.97D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.55(C2^2.D4) | 128,778 |
C22.56(C22.D4) = C4⋊C4.98D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 64 | | C2^2.56(C2^2.D4) | 128,779 |
C22.57(C22.D4) = M4(2).8D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 16 | 8+ | C2^2.57(C2^2.D4) | 128,780 |
C22.58(C22.D4) = M4(2).9D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | 8- | C2^2.58(C2^2.D4) | 128,781 |
C22.59(C22.D4) = (C2×C8).D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 16 | 8+ | C2^2.59(C2^2.D4) | 128,813 |
C22.60(C22.D4) = (C2×C8).6D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | 8- | C2^2.60(C2^2.D4) | 128,814 |
C22.61(C22.D4) = C23.382C24 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.61(C2^2.D4) | 128,1214 |
C22.62(C22.D4) = C24.96D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.62(C2^2.D4) | 128,1215 |
C22.63(C22.D4) = C24.576C23 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 64 | | C2^2.63(C2^2.D4) | 128,1216 |
C22.64(C22.D4) = C24.117D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.64(C2^2.D4) | 128,1826 |
C22.65(C22.D4) = C24.118D4 | φ: C22.D4/C2×D4 → C2 ⊆ Aut C22 | 32 | | C2^2.65(C2^2.D4) | 128,1827 |
C22.66(C22.D4) = C24.17Q8 | central extension (φ=1) | 64 | | C2^2.66(C2^2.D4) | 128,165 |
C22.67(C22.D4) = C24.624C23 | central extension (φ=1) | 128 | | C2^2.67(C2^2.D4) | 128,166 |
C22.68(C22.D4) = C24.626C23 | central extension (φ=1) | 128 | | C2^2.68(C2^2.D4) | 128,168 |
C22.69(C22.D4) = C23⋊2C42 | central extension (φ=1) | 64 | | C2^2.69(C2^2.D4) | 128,169 |
C22.70(C22.D4) = C24.50D4 | central extension (φ=1) | 64 | | C2^2.70(C2^2.D4) | 128,170 |
C22.71(C22.D4) = C24.5Q8 | central extension (φ=1) | 64 | | C2^2.71(C2^2.D4) | 128,171 |
C22.72(C22.D4) = C24.52D4 | central extension (φ=1) | 64 | | C2^2.72(C2^2.D4) | 128,172 |
C22.73(C22.D4) = C24.631C23 | central extension (φ=1) | 128 | | C2^2.73(C2^2.D4) | 128,173 |
C22.74(C22.D4) = C24.632C23 | central extension (φ=1) | 128 | | C2^2.74(C2^2.D4) | 128,174 |
C22.75(C22.D4) = C24.633C23 | central extension (φ=1) | 128 | | C2^2.75(C2^2.D4) | 128,175 |
C22.76(C22.D4) = C24.634C23 | central extension (φ=1) | 128 | | C2^2.76(C2^2.D4) | 128,176 |
C22.77(C22.D4) = C24.635C23 | central extension (φ=1) | 128 | | C2^2.77(C2^2.D4) | 128,177 |
C22.78(C22.D4) = C23.36D8 | central extension (φ=1) | 64 | | C2^2.78(C2^2.D4) | 128,555 |
C22.79(C22.D4) = C24.157D4 | central extension (φ=1) | 64 | | C2^2.79(C2^2.D4) | 128,556 |
C22.80(C22.D4) = C24.69D4 | central extension (φ=1) | 64 | | C2^2.80(C2^2.D4) | 128,557 |
C22.81(C22.D4) = C23.37D8 | central extension (φ=1) | 64 | | C2^2.81(C2^2.D4) | 128,584 |
C22.82(C22.D4) = C24.159D4 | central extension (φ=1) | 64 | | C2^2.82(C2^2.D4) | 128,585 |
C22.83(C22.D4) = C24.71D4 | central extension (φ=1) | 64 | | C2^2.83(C2^2.D4) | 128,586 |
C22.84(C22.D4) = C24.160D4 | central extension (φ=1) | 64 | | C2^2.84(C2^2.D4) | 128,604 |
C22.85(C22.D4) = C24.73D4 | central extension (φ=1) | 64 | | C2^2.85(C2^2.D4) | 128,605 |
C22.86(C22.D4) = C23.38D8 | central extension (φ=1) | 64 | | C2^2.86(C2^2.D4) | 128,606 |
C22.87(C22.D4) = C24.74D4 | central extension (φ=1) | 64 | | C2^2.87(C2^2.D4) | 128,607 |
C22.88(C22.D4) = C2.D8⋊4C4 | central extension (φ=1) | 128 | | C2^2.88(C2^2.D4) | 128,650 |
C22.89(C22.D4) = C4.Q8⋊9C4 | central extension (φ=1) | 128 | | C2^2.89(C2^2.D4) | 128,651 |
C22.90(C22.D4) = C4.Q8⋊10C4 | central extension (φ=1) | 128 | | C2^2.90(C2^2.D4) | 128,652 |
C22.91(C22.D4) = C2.D8⋊5C4 | central extension (φ=1) | 128 | | C2^2.91(C2^2.D4) | 128,653 |
C22.92(C22.D4) = D4⋊C4⋊C4 | central extension (φ=1) | 64 | | C2^2.92(C2^2.D4) | 128,657 |
C22.93(C22.D4) = C4.67(C4×D4) | central extension (φ=1) | 64 | | C2^2.93(C2^2.D4) | 128,658 |
C22.94(C22.D4) = C4.68(C4×D4) | central extension (φ=1) | 128 | | C2^2.94(C2^2.D4) | 128,659 |
C22.95(C22.D4) = C2.(C4×Q16) | central extension (φ=1) | 128 | | C2^2.95(C2^2.D4) | 128,660 |
C22.96(C22.D4) = C2×C23.34D4 | central extension (φ=1) | 64 | | C2^2.96(C2^2.D4) | 128,1011 |
C22.97(C22.D4) = C2×C23.8Q8 | central extension (φ=1) | 64 | | C2^2.97(C2^2.D4) | 128,1018 |
C22.98(C22.D4) = C2×C23.23D4 | central extension (φ=1) | 64 | | C2^2.98(C2^2.D4) | 128,1019 |
C22.99(C22.D4) = C2×C23.63C23 | central extension (φ=1) | 128 | | C2^2.99(C2^2.D4) | 128,1020 |
C22.100(C22.D4) = C2×C24.C22 | central extension (φ=1) | 64 | | C2^2.100(C2^2.D4) | 128,1021 |
C22.101(C22.D4) = C2×C23.10D4 | central extension (φ=1) | 64 | | C2^2.101(C2^2.D4) | 128,1118 |
C22.102(C22.D4) = C2×C23.11D4 | central extension (φ=1) | 64 | | C2^2.102(C2^2.D4) | 128,1122 |
C22.103(C22.D4) = C2×C23.81C23 | central extension (φ=1) | 128 | | C2^2.103(C2^2.D4) | 128,1123 |
C22.104(C22.D4) = C2×C23.4Q8 | central extension (φ=1) | 64 | | C2^2.104(C2^2.D4) | 128,1125 |
C22.105(C22.D4) = C2×C23.83C23 | central extension (φ=1) | 128 | | C2^2.105(C2^2.D4) | 128,1126 |
C22.106(C22.D4) = C2×C22.D8 | central extension (φ=1) | 64 | | C2^2.106(C2^2.D4) | 128,1817 |
C22.107(C22.D4) = C2×C23.47D4 | central extension (φ=1) | 64 | | C2^2.107(C2^2.D4) | 128,1818 |
C22.108(C22.D4) = C2×C23.19D4 | central extension (φ=1) | 64 | | C2^2.108(C2^2.D4) | 128,1819 |
C22.109(C22.D4) = C2×C23.20D4 | central extension (φ=1) | 64 | | C2^2.109(C2^2.D4) | 128,1820 |
C22.110(C22.D4) = C2×C23.46D4 | central extension (φ=1) | 64 | | C2^2.110(C2^2.D4) | 128,1821 |
C22.111(C22.D4) = C2×C23.48D4 | central extension (φ=1) | 64 | | C2^2.111(C2^2.D4) | 128,1822 |
C22.112(C22.D4) = C24.83D4 | central stem extension (φ=1) | 64 | | C2^2.112(C2^2.D4) | 128,765 |
C22.113(C22.D4) = C24.84D4 | central stem extension (φ=1) | 64 | | C2^2.113(C2^2.D4) | 128,766 |
C22.114(C22.D4) = C24.85D4 | central stem extension (φ=1) | 64 | | C2^2.114(C2^2.D4) | 128,767 |
C22.115(C22.D4) = C24.86D4 | central stem extension (φ=1) | 64 | | C2^2.115(C2^2.D4) | 128,768 |
C22.116(C22.D4) = (C2×C4).24D8 | central stem extension (φ=1) | 64 | | C2^2.116(C2^2.D4) | 128,803 |
C22.117(C22.D4) = (C2×C4).19Q16 | central stem extension (φ=1) | 128 | | C2^2.117(C2^2.D4) | 128,804 |
C22.118(C22.D4) = C42⋊8C4⋊C2 | central stem extension (φ=1) | 64 | | C2^2.118(C2^2.D4) | 128,805 |
C22.119(C22.D4) = (C2×Q8).109D4 | central stem extension (φ=1) | 128 | | C2^2.119(C2^2.D4) | 128,806 |
C22.120(C22.D4) = C23.12D8 | central stem extension (φ=1) | 64 | | C2^2.120(C2^2.D4) | 128,807 |
C22.121(C22.D4) = C24.88D4 | central stem extension (φ=1) | 64 | | C2^2.121(C2^2.D4) | 128,808 |
C22.122(C22.D4) = C24.89D4 | central stem extension (φ=1) | 64 | | C2^2.122(C2^2.D4) | 128,809 |
C22.123(C22.D4) = (C2×C8).1Q8 | central stem extension (φ=1) | 128 | | C2^2.123(C2^2.D4) | 128,815 |
C22.124(C22.D4) = C2.(C8⋊3Q8) | central stem extension (φ=1) | 128 | | C2^2.124(C2^2.D4) | 128,816 |
C22.125(C22.D4) = (C2×C8).24Q8 | central stem extension (φ=1) | 128 | | C2^2.125(C2^2.D4) | 128,817 |
C22.126(C22.D4) = (C2×C8).168D4 | central stem extension (φ=1) | 64 | | C2^2.126(C2^2.D4) | 128,824 |
C22.127(C22.D4) = (C2×C4).27D8 | central stem extension (φ=1) | 64 | | C2^2.127(C2^2.D4) | 128,825 |
C22.128(C22.D4) = (C2×C8).169D4 | central stem extension (φ=1) | 64 | | C2^2.128(C2^2.D4) | 128,826 |
C22.129(C22.D4) = (C2×C8).60D4 | central stem extension (φ=1) | 128 | | C2^2.129(C2^2.D4) | 128,827 |
C22.130(C22.D4) = (C2×C8).170D4 | central stem extension (φ=1) | 128 | | C2^2.130(C2^2.D4) | 128,828 |
C22.131(C22.D4) = (C2×C8).171D4 | central stem extension (φ=1) | 128 | | C2^2.131(C2^2.D4) | 128,829 |
C22.132(C22.D4) = (C2×C4).28D8 | central stem extension (φ=1) | 128 | | C2^2.132(C2^2.D4) | 128,831 |
C22.133(C22.D4) = (C2×C4).23Q16 | central stem extension (φ=1) | 128 | | C2^2.133(C2^2.D4) | 128,832 |
C22.134(C22.D4) = C4⋊C4.Q8 | central stem extension (φ=1) | 128 | | C2^2.134(C2^2.D4) | 128,833 |